Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Langmuir ; 32(33): 8403-12, 2016 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-27479732

RESUMO

RAD51 is the key component of the homologous recombination pathway in eukaryotic cells and performs its task by forming filaments on DNA. In this study we investigate the physical properties of RAD51 filaments formed on DNA using nanofluidic channels and fluorescence microscopy. Contrary to the bacterial ortholog RecA, RAD51 forms inhomogeneous filaments on long DNA in vitro, consisting of several protein patches. We demonstrate that a permanent "kink" in the filament is formed where two patches meet if the stretch of naked DNA between the patches is short. The kinks are readily seen in the present microscopy approach but would be hard to identify using conventional single DNA molecule techniques where the DNA is more stretched. We also demonstrate that protein patches separated by longer stretches of bare DNA roll up on each other and this is visualized as transiently overlapping filaments. RAD51 filaments can be formed at several different conditions, varying the cation (Mg(2+) or Ca(2+)), the DNA substrate (single-stranded or double-stranded), and the RAD51 concentration during filament nucleation, and we compare the properties of the different filaments formed. The results provide important information regarding the physical properties of RAD51 filaments but also demonstrate that nanofluidic channels are perfectly suited to study protein-DNA complexes.

2.
J Phys Chem B ; 118(41): 11895-904, 2014 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-25197950

RESUMO

Biosensors, in which binding of ligands is detected through changes in the optical or electrochemical properties of a DNA layer confined to the sensor surface, are important tools for investigating DNA interactions. Here, we investigate if conformational changes induced in surface-attached DNA molecules upon ligand binding can be monitored by the quartz crystal microbalance with dissipation (QCM-D) technique. DNA duplexes containing 59-184 base pairs were formed on QCM-D crystals by stepwise assembly of synthetic oligonucleotides of designed base sequences. The DNA films were exposed to the cationic polyamines spermidine and spermine, known to condense DNA molecules in bulk experiments, or to the recombination protein Rad51, known to extend the DNA helix. The binding and dissociation of the ligands to the DNA films were monitored in real time by measurements of the shifts in resonance frequency (Δf) and in dissipation (ΔD). The QCM-D data were analyzed using a Voigt-based model for the viscoelastic properties of polymer films in order to evaluate how the ligands affect thickness and shear viscosity of the DNA layer. Binding of spermine shrinks all DNA layers and increases their viscosity in a reversible fashion, and so does spermidine, but to a smaller extent, in agreement with its lower positive charge. SPR was used to measure the amount of bound polyamines, and when combined with QCM-D, the data indicate that the layer condensation leads to a small release of water from the highly hydrated DNA films. The binding of Rad51 increases the effective layer thickness of a 59 bp film, more than expected from the know 50% DNA helix extension. The combined results provide guidelines for a QCM-D biosensor based on ligand-induced structural changes in DNA films. The QCM-D approach provides high discrimination between ligands affecting the thickness and the structural properties of the DNA layer differently. The reversibility of the film deformation allows comparative studies of two or more analytes using the same DNA layer as demonstrated here by spermine and spermidine.


Assuntos
DNA/química , Técnicas de Microbalança de Cristal de Quartzo/métodos , Rad51 Recombinase/química , Espermidina/química , Espermina/química , Técnicas Biossensoriais/métodos , Cátions/química , Modelos Químicos , Modelos Genéticos , Conformação de Ácido Nucleico , Substâncias Viscoelásticas/química , Viscosidade , Água/química
3.
Nanoscale ; 6(24): 14605-16, 2014 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-25208687

RESUMO

The development of top-down nanofabrication techniques has opened many possibilities for the design and realization of complex devices based on single molecule phenomena such as e.g. single molecule electronic devices. These impressive achievements have been complemented by the fundamental understanding of self-assembly phenomena, leading to bottom-up strategies to obtain hybrid nanomaterials that can be used as building blocks for more complex structures. In this feature article we highlight some relevant published work as well as present new experimental results, illustrating the versatility of self-assembly methods combined with top-down fabrication techniques for solving relevant challenges in modern nanotechnology. We present recent developments on the use of hierarchical self-assembly methods to bridge the gap between sub-nanometer and micrometer length scales. By the use of non-covalent self-assembly methods, we show that we are able to control the positioning of nanoparticles on surfaces, and to address the deterministic assembly of nano-devices with potential applications in plasmonic sensing and single-molecule electronics experiments.

4.
J Phys Chem B ; 118(31): 9247-57, 2014 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-25020040

RESUMO

To assist polarized-light spectroscopy for protein-structure analysis, the UV spectrum of p-cresol, the chromophore of tyrosine, was studied with respect to transition moment directions and perturbation by solvent environment. From linear dichroism (LD) spectra of p-cresol aligned in stretched matrices of poly(vinyl alcohol) and polyethylene, the lowest π-π* transition (Lb) is found to have pure polarization over its entire absorption (250-300 nm) with a transition moment perpendicular to the symmetry axis (C1-C4), both in polar and nonpolar environments. For the second transition (La), polarized parallel with the symmetry axis, a certain admixture of intensity with orthogonal polarization is noticed, depending on the environment. While the Lb spectrum in cyclohexane shows a pronounced vibrational structure, it is blurred in methanol, which can be modeled as due to many microscopic polar environments. With the use of quantum mechanical (QM) calculations, the transition moments and solvent effects were analyzed with the B3LYP and ωB97X-D functionals in cyclohexane, water, and methanol using a combination of implicit and explicit solvent models. The blurred Lb band is explained by solvent hydrogen bonds, where both accepting and donating a hydrogen causes energy shifts. The inhomogeneous solvent-shift sensitivity in combination with robust polarization can be exploited for analyzing tyrosine orientation distributions in protein complexes using LD spectroscopy.


Assuntos
Cresóis/química , Análise Espectral/métodos , Tirosina/química , Raios Ultravioleta , Cicloexanos/química , Hidrogênio/química , Ligação de Hidrogênio , Metanol/química , Modelos Químicos , Processos Fotoquímicos , Polietileno/química , Álcool de Polivinil/química , Teoria Quântica , Solventes/química , Vibração , Água/química
5.
Nucleic Acids Res ; 42(4): 2358-65, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24304898

RESUMO

The Swi5-Sfr1 heterodimer protein stimulates the Rad51-promoted DNA strand exchange reaction, a crucial step in homologous recombination. To clarify how this accessory protein acts on the strand exchange reaction, we have analyzed how the structure of the primary reaction intermediate, the Rad51/single-stranded DNA (ssDNA) complex filament formed in the presence of ATP, is affected by Swi5-Sfr1. Using flow linear dichroism spectroscopy, we observe that the nucleobases of the ssDNA are more perpendicularly aligned to the filament axis in the presence of Swi5-Sfr1, whereas the bases are more randomly oriented in the absence of Swi5-Sfr1. When using a modified version of the natural protein where the N-terminal part of Sfr1 is deleted, which has no affinity for DNA but maintained ability to stimulate the strand exchange reaction, we still observe the improved perpendicular DNA base orientation. This indicates that Swi5-Sfr1 exerts its activating effect through interaction with the Rad51 filament mainly and not with the DNA. We propose that the role of a coplanar alignment of nucleobases induced by Swi5-Sfr1 in the presynaptic Rad51/ssDNA complex is to facilitate the critical matching with an invading double-stranded DNA, hence stimulating the strand exchange reaction.


Assuntos
DNA de Cadeia Simples/química , Recombinação Homóloga , Rad51 Recombinase/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Cálcio/química , DNA de Cadeia Simples/metabolismo
6.
J Phys Chem B ; 117(19): 5820-30, 2013 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-23607615

RESUMO

Hoechst 33258 binds with high affinity into the minor groove of AT-rich sequences of double-helical DNA. Despite extensive studies of this and analogous DNA binding molecules, there still remains uncertainty concerning the interactions when multiple ligand molecules are accommodated within close distance. Albeit not of direct concern for most biomedical applications, which are at low drug concentrations, interaction studies for higher drug binding are important as they can give fundamental insight into binding mechanisms and specificity, including drug self-stacking interactions that can provide base-sequence specificity. Using circular dichroism (CD), isothermal titration calorimetry (ITC), and proton nuclear magnetic resonance ((1)H NMR), we examine the binding of Hoechst 33258 to three oligonucleotide duplexes containing AT regions of different lengths: [d(CGCGAATTCGCG)]2 (A2T2), [d(CGCAAATTTGCG)]2 (A3T3), and [d(CGAAAATTTTCG)]2 (A4T4). We find similar binding geometries in the minor groove for all oligonucleotides when the ligand-to-duplex ratio is less than 1:1. At higher ratios, a second ligand can be accommodated in the minor groove of A4T4 but not A2T2 or A3T3. We conclude that the binding of the second Hoechst to A4T4 is not cooperative and that the molecules are sitting with a small separation apart, one after the other, and not in a sandwich structure as previously proposed.


Assuntos
Bisbenzimidazol/metabolismo , DNA/química , DNA/metabolismo , Conformação de Ácido Nucleico , Sequência de Bases , DNA/genética , Cinética , Modelos Moleculares , Termodinâmica
7.
Inorg Chem ; 52(2): 1151-9, 2013 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-23268648

RESUMO

Despite the extensive interest in structurally explaining the photophysics of DNA-bound [Ru(phen)(2)dppz](2+) and [Ru(bpy)(2)dppz](2+), the origin of the two distinct emission lifetimes of the pure enantiomers when intercalated into DNA has remained elusive. In this report, we have combined a photophysical characterization with a detailed isothermal titration calorimetry study to investigate the binding of the pure Δ and Λ enantiomers of both complexes with [poly(dAdT)](2). We find that a binding model with two different binding geometries, proposed to be symmetric and canted intercalation from the minor groove, as recently reported in high-resolution X-ray structures, is required to appropriately explain the data. By assigning the long emission lifetime to the canted binding geometry, we can simultaneously fit both calorimetric data and the binding-density-dependent changes in the relative abundance of the two emission lifetimes using the same binding model. We find that all complex-complex interactions are slightly unfavorable for Δ-[Ru(bpy)(2)dppz](2+), whereas interactions involving a complex canted away from a neighbor are favorable for the other three complexes. We also conclude that Δ-[Ru(bpy)(2)dppz](2+) preferably binds isolated, Δ-[Ru(phen)(2)dppz](2+) preferably binds as duplets of canted complexes, and that all complexes are reluctant to form longer consecutive sequences than triplets. We propose that this is due to an interplay of repulsive complex-complex and attractive complex-DNA interactions modulated by allosteric DNA conformation changes that are largely affected by the nature of the ancillary ligands.


Assuntos
DNA/química , Substâncias Intercalantes/química , Compostos Organometálicos/química , Fenazinas/química , Rutênio/química , Modelos Moleculares , Estrutura Molecular , Estereoisomerismo , Termodinâmica
8.
Biochim Biophys Acta ; 1818(11): 2669-78, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22705501

RESUMO

Cell surface proteoglycans (PGs) appear to promote uptake of arginine-rich cell-penetrating peptides (CPPs), but their exact functions are unclear. To address if there is specificity in the interactions of arginines and PGs leading to improved internalization, we used flow cytometry to examine uptake in relation to cell surface binding for penetratin and two arginine/lysine substituted variants (PenArg and PenLys) in wildtype CHO-K1 and PG-deficient A745 cells. All peptides were more efficiently internalized into CHO-K1 than into A745, but their cell surface binding was independent of cell type. Thus, PGs promote internalization of cationic peptides, irrespective of the chemical nature of their positive charges. Uptake of each peptide was linearly dependent on its cell surface binding, and affinity is thus important for efficiency. However, the gradients of these linear dependencies varied significantly. Thus each peptide's ability to stimulate uptake once bound to the cell surface is reliant on formation of specific uptake-promoting interactions. Heparin affinity chromatography and clustering experiments showed that penetratin and PenArg binding to sulfated sugars is stabilized by hydrophobic interactions and result in clustering, whereas PenLys only interacts through electrostatic attraction. This may have implications for the molecular mechanisms behind arginine-specific uptake stimulation as penetratin and PenArg are more efficiently internalized than PenLys upon interaction with PGs. However, PenArg is also least affected by removal of PGs. This indicates that an increased arginine content not only improve PG-dependent uptake but also that PenArg is more adaptable as it can use several portals of entry into the cell.


Assuntos
Arginina/química , Proteínas de Transporte/metabolismo , Lisina/química , Proteoglicanas/metabolismo , Animais , Células CHO , Proteínas de Transporte/química , Membrana Celular/metabolismo , Peptídeos Penetradores de Células , Cricetinae , Cricetulus , Fluorescência , Heparina/metabolismo , Ligação Proteica
9.
Nucleic Acids Res ; 40(11): 4904-13, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22362735

RESUMO

Human RAD51 protein (HsRad51) catalyses the DNA strand exchange reaction for homologous recombination. To clarify the molecular mechanism of the reaction in vitro being more effective in the presence of Ca(2+) than of Mg(2+), we have investigated the effect of these ions on the structure of HsRad51 filament complexes with single- and double-stranded DNA, the reaction intermediates. Flow linear dichroism spectroscopy shows that the two ionic conditions induce significantly different structures in the HsRad51/single-stranded DNA complex, while the HsRad51/double-stranded DNA complex does not demonstrate this ionic dependence. In the HsRad51/single-stranded DNA filament, the primary intermediate of the strand exchange reaction, ATP/Ca(2+) induces an ordered conformation of DNA, with preferentially perpendicular orientation of nucleobases relative to the filament axis, while the presence of ATP/Mg(2+), ADP/Mg(2+) or ADP/Ca(2+) does not. A high strand exchange activity is observed for the filament formed with ATP/Ca(2+), whereas the other filaments exhibit lower activity. Molecular modelling suggests that the structural variation is caused by the divalent cation interfering with the L2 loop close to the DNA-binding site. It is proposed that the larger Ca(2+) stabilizes the loop conformation and thereby the protein-DNA interaction. A tight binding of DNA, with bases perpendicularly oriented, could facilitate strand exchange.


Assuntos
Cálcio/química , DNA de Cadeia Simples/química , Rad51 Recombinase/química , Difosfato de Adenosina/química , Trifosfato de Adenosina/química , Cátions Bivalentes/química , DNA de Cadeia Simples/metabolismo , Humanos , Magnésio/química , Modelos Moleculares , Rad51 Recombinase/metabolismo , Recombinação Genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...